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Individual Differences in Attention

People seldom concentrate their attention on a single activity.

Drivers allow their minds to wander without driving into walls. The

executive talking on three telephones at once may be fictional, but the

airline traveler who reads while listening for flight announcements is

real. Thinking about more than one thing at a time is a complex and

important aspect of daily life.

When asked to explain complex behaviors, psychologists often try to

break them down into their constituent elements. In factor analysis,

performance on a complex test is depicted as a linear combination of basic

abilities. A similar logic underlies Sternberg's (1977, 1979) technique

of componential analysis. Sternberg's approach is to break complex prob-

lem solving behavior into stages, and to measure the processes involved in

each stage. Problem solving, from this point of view, can be compared to

the execution of a complex program with many subroutines. The program is

to be understood by isolating the subroutines and measuring their capacities.

A similar logic appears in our own research (Hunt, Frost, & Lunneborg, 1973;

Hunt, Lunneborg, & Lewis, 1975), where we utilized what Pellegrino and

Glazer (1979) have called the "cognitive correlates" approach. The basic

idea behind this work was that human thought, as a form of information

processing, must involve some basic information processing functions, analo-

gous to the machine level operations (not the subroutines) of a digital

computer (Hunt & Poltrock, 1974). Pure measures of these functions should

be related to complex performance.

-- t
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The assumption that has pervaded our work and that of others is that

tasks done in isolation place the same demands on the information processing

system as tasks done concurrently. This is the assumption we wish to ques-

tion here. This assumption not only pervades the way we analyze data, but

the way we collect it. We take great care to present people with just one

problem at a time. But by concentrating on the ability to do things singly,

we may miss a dimension of human behavior that is associated with the exe-

cution of concurrent tasks. The point has been made eloquently by H. A.

Simon (1969) in his book, The Science of the Artificial. Simnn observed

that complex systems are often made up of simple subsystems. The conplexity

arises not from properties of the subsystems, but from their interaction.

Hence we cannot hope to understand the operation of the large system simply

by an analysis of the subsystems in isolation.

In this paper we shall look at a very simple model of dual task exe-

cution, a model in which each task is seen as competing for a general atten-

tional resource. In such a model, the phrase "pay attention" is taken quite

literally. The concept of an allocatable mental resouce has received con-

siderable attention in experimental psychology, but little effort has been

made to formally apply the concept to individual differences research, or to

discover how patterns of individual differences could be used to test models

of resource allocation.

This presentation will be In four sections. The first contains a dis-

cussion of the concept of attentional resources as it has been developed by

experimental psychologists. The second presents a formal model of the role

of attentional resources in determining individual performance. The third

section reports experimental results which pertain to this model. A closing
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section deals with further implications of the basic ideas.

THE RESOURCE COMPETITION MODEL

Theory

According to the resource competition model, attention is akin to an

energy resource, in that it can be parcelled out over concurrently executed

tasks. The proposal has a long history in psychology. Posner (1978) cited

relevant papers in the nineteenth century. Even Spearman's writings on the

nature of general intelligence can be interpreted in terms of a general

attentional resource. Kahneman (1973) has written the most comprehensive

modern treatment, and we shall generally follow his analysis.

Consider any information processing task. By definition, the task in-

volves the manipulation of signals being transmitted through the central

nervous system. The manipulations must be carried out by specific structures.

What happens when an information processing system executes two logically

independent tasks concurrently? If the tasks require access to the same

information processing structures, then the two tasks will interfere with

each other. This is called structural interference.

Structural interference is obvious in many situations thatrequireex-

ternal sensors and effectors. We cannot look to the left and right simul-

taneously. Nor can we jump east and west. If the"structures" involved are

central rather than peripheral, the interpretation is less obvious. For

example, Baddeley and Hitch (1974) conducted a series of experiments in

which people first memorized a list of digits, then attempted to comprehend

sentences, and finally recited the digits. They found that digit memori-

zation Interfered with sentence comprehension. Baddeley and Hitch's inter-

pretation was that the two tasks competed for space in a working memory
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structure.

Other cases of inter-task interference are harder to explain in terms

of competition for a structure, since it is not clear what structure is

required by both tasks. Try to recite poetry while juggling! To account

for non-structuralinterference, Kahneman (1973) proposed that all mental

processes compete for a single pool of attentional resources. We will call

this the resource competition model. Kahneman argued that attentional resour-

ces are analogous to a mental fuel that is drawn upon by virtually every

mental activity. Th. availability of resources places a limit on the amount

of mental processing that can take place at any one time.

Attentional resources are drawn upon by different mental structures in

accordance with the demands that external tasks place upon them. The quan-

tity of resources made available to a particular structure will depend upon

the allocation policy that is in effect. An allocation policy determines

how resources are to be distributed to the structures required by competing

tasks. The allocation policy is based upon the total level of resources

available (the capacity) and the expected payoff for varying levels of

* ;performance in each task. A resource competition model is not inconsistent

with a structural model of inter-task interference, since the two types of

14 models explain different situations. But how one analyzes people's ability

to do several things at once does depend upon whether one believes that

Inter-task interference is primarily due to structural or to attentional

resource competition.

Norman and Bobrow (1975) elaborated upon Kahneman's proposal by Intro-

ducing several useful concepts. The first of these was the notion of a

performance-resource function, a function that specifies the relationship

, - . .. -- ,..-. ... ---- ,W4- - --....
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between the level of attentional resource supplied and the performance

expected on a task. A hypothetical performance-resource function is shown

in Figure 1, and will be used to illustrate Norman and Bobrow's ideas. An

important point to remember is that Figure 1 does not represent the

Insert Figure 1 about here

relationship between two observables. It reletes observable performance,

p, to the conceptual but In principle unobservable variable, r, attentional

resources. Symbolically, we shall refer to the function

(1) p = f(r)

Although we cannot observe f directly, we nay place some restrictions

upon it. First, providing more resources should never hurt performance.

Therefore the first derivative, f', should be non-negative

(2) f'(r) > 0 .

Whenever f' is positive, an increase in resources will cause an increase in

performance and, conversely, a decrease in resources will cause a decrease

in performance. In such cases per'ormance is said to be resource-limited.

In Figure 1 performance is resource-limited from points A to B, and again

from C to D. Whenever f' is zero, changing the resource level will not

change performance, and performance is said to be data-limited.

The terms resource-limited and data-limited have appealing intuitive

4 interpretations. One can easily think of tasks that seem to be resource-

limited, i.e. tasks in which performance id determined by the extent to

which we pay attention to what we are doing. Data limitations are equally

easy to envisage. Most normal individuals can memorize two digits easily,

and could not improve performance by paying more than the minimal amount of
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attention required. As a more complex example, suppose that you are listen-

ing to a radio and that the transmission is masked by static. Your ability

to comprehend the broadcast will be determined by the amount of attention

you pay to it up to a certain point. Beyond that point, the sinal-to-

noise ratio becomes the limiting factor and performance becomes data-limited.

Data limitations are produced by the interaction between task require-

ments and personal capacities, and thus cannot be assigned to one or the

other cause. In our radio broadcast example, we located data limitation in

the radio transmitter. But people with different degrees of hiqh frequency

hearing loss would vary in the point at which they shifted from resource-

limited performance (where they could comprehend more by paying more attention)

to data-limited performance (where additional attention could not improve

performance).

• ( In spite of the heuristic value of examples, the concepts of resource

and data limitation are strictly defined in terms of Equations (1) and (2),

and, in the last analysis, are abstract relationships that can be only

imperfectly represented in any concrete situation. The reason that the

performance-resource function and its associated concepts must remain abstract

is that we have no way of establishing a metric for r, the "amount of re-

sources allocated."

Two indirect approaches to the measurement of resources have been

attempted. One is to equate resource availability with a physiological

concept, usually arousal. Resource output is then measured in terms of

physiological status. Heart rate, cardiac deceleration, and dilation of
iI

the pupil of the eye have all been proposed as appropriate measures. Al-

though these measures are interesting, the fact that they do not correlate
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well with each other across situations makes their conceptual status

problematical.

An alternative approach, which we have taken in our own research, is

to use as an index of resource allocation the extent to which a task

interferes with the execution of a second standard task. While the logic

of this measurement technique does not depend upon Norman and Bobrow's

analysis (see, for instance, the alternative treatment by Kerr, 1973), we

shall use their terminology.

Imagine two abstract tasks, I and 2, that are to be done concurrently

and that do not exhibit structural interference. Performance on the first

task may be plotted as a function of performance on the second. Letting

pi be performance on the ith task (i=1,2), Norman and Bobrow refer to

the function

(3) P1 = g(P2 )

as a performance operating characteristic (POC). Figure 2 presents an

abstract POC, and will be used to illustrate some general features of

these curves.

Insert Figure 2 about here

The form of a POC will be determined by the competition between tasks

for attentional resources, Let R be total resource capacity and let r, and

r2 be the resources allocated to Tasks 1 and 2.
The resulting performance levels are

(4) P1 a f1(r1 ) ; P2 = f(r2)'

with rI subject to the restriction that

(5) R - r1 + r 2
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Consider the horizontal section of the POC running from points

A to B in Figure 2. This is evidence that Task I is data-limited at

pertormance level pl*, since Task 2 performance increases in the A-B

interval, without causing a drop in Task 1 performance. Since, by

assumption, performance on a fixed task cannot increase without the

commitment of more resources to it, some resources must have been

diverted from Task 1 to Task 2 without causing a drop in performance.

This is evidence that the performance-resource function for Task 1 is

flat in the A-B region, i.e. at performance level pI*. By similar

reasoning, the vertical segment of the POC, from points C to D, is evi-

dence that Task 2 is data-limited and that Task 1 is resource-limited in

the C-D interval. Finally, both Tasks 1 and 2 must be resource-limited

in the B-C interval, as an increment in performance of one task is al-

ways accompanied by a decrement in performance in the other. What would

happen if Tasks 1 and 2 were both data-limited? The POC would degenerate

into a point defined by the intersection of a horizontal and vertical line.

The POC provides us with a method for determining the amount of re-

sources required by an individual in order to reach a given level of per-

formance on Task 1, when Task 1 has been designated as "primary" or most

important to the performer. The experimenter specifies the external prob-

lem, establishes the desired level of performance on Task 1, and then

measures the resource requirements of Task I by observing performance

on the concurrent secondary task, Task 2. To illustrate, consider the

following experiment. A performer is asked to memorize a short list of

digits (Task 1) and then,while rehearsing those digits, to react to a

probe signal, e.g. a light or tone (Task 2). After responding to the

I. ...... I .... ..... .
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probe, the performer must recall the digits. Suppose that the performance-

resource function for rehearsing digits is as shown in Figure 3a. The num.-

ber of digits one is capable of maintaining in memory increases with the

resources deployed, up to the total resource capacity (R). We can re-plot

this figure to show a family of curves: probability of correct recall as

a function of resources applied to the task, with the curve parameter being

the number of digits to be memorized. This is shown (for two and five digits)

in Figure 3b. The goal is to measure the minimum amount of resources re-

quired to memorize one, two, three, four, or five digits, points A and B

(for two and five) in Figure 3b. But, the abscissa of the performance-

resource function refers to a hypothetical variable, r, that is, in principle,

not open to direct observation.

Insert Figure 3 about here

Performance on the probe reaction time task (Task 2) may be used to

obtain the needed measure. The argument is that, under an appropriate

payoff arrangenent, a person should devote to the secondary task only

those resources that are left over from the primary task. Thus performance

on the secondary task provides a measure of the "spare capacity" left over

after adequate resources have been devoted to the primary task. This pro-

cedure is valid only if the secondary task is resource-limited over the

range of performance under consideration.

Continuing our example, suppose that the speed of reaction to a probe

is a monotonically increasing function Of the resources devoted to the re-

action time task. The argument does not depend upon the form of the func-

tion, only upon the fact that the function satisfies the criterion for

resource limitation, fi(r)>O.

-- -- L-



Attention

10

We then consider what POC will result when we combine the probe task

with the task of memorizing two or five digits. Two possible POCs are shown

in Figure 4. The key points in Figure 4 are the points A2 and A5. These

are the points at which the two memory tasks become data-limited.

Insert Figure 4 about here

Since less resources are required to reach the data limitation point

for the memorization of two than five digits, probe responding should be

faster in the two digit than in the five digit condition.

What we are doing, then, is using performance on Task 2 as a measure

of Task 1 resource requirements. Letting P2(2) and P2(5) be secondary task

performance in the two and five digit memorization conditions, with an ana-

logous notation for resources allocated, we have defined Task 2 resource

requirements by

(6) r2(2) = f21 (P2(2)) ; r2(5) = f21(p2 (5)).

Since total resource capacity, R, is split between the two tasks,wecan com-

bine (5) with (6) to define r1(i), the amount of resources required to main-

tain i digits in memory, by

(7) rl(i) = R- f 1

To what extent is this a scale? For the scale to be a linear or strong-

er measure of r we would have to make (and justify) some assumptions about

f2. We shall discuss this in more detail later. For the present, we point

out that the weak assumption that f is a performance-resource function and

the much stronger assumption that R is constant nvr conditions are suffi-

cient to ensure that P2(i) is an ordinal scale of r10). That is,

(8) ( P2 (i)tP 2(J)) (rl(i):,r1(j)).

_!r7!7_:
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Quite aside from measurement theory considerations, the paradigm

that we have described contains some important and not always obvious

assumptions about behavior. These have been discussed in detail by Navon

and Gopher (1979), so we shall mention them only briefly. One of the most

important assumptions, an one of the hardest to justify, is that the per-

former is indeed operating at the point at which Task I performance shifts

from a resource to a data limitation. Experimenters attempt to ensure

this by instructing performers to devote enough effort to the primary task

to perform it correctly, and to devote their remaining effort to the sec-

ondary task. In some experiments these instructions are supplemented by

an explicit payoff scheme, so that a person who wishes to maximize ob-

jective rewards will perform at the data limiting point. Obviously a per-

former can do this only if the performer and the experimenter agree, quite

precisely, on the meaning of the instructions and the values of the payoffs.

Secondary task instructions also implicitly assume that the performer has

a sophisticated knowledge of his/her personal performance-resource function

for the task.

A second question concerns the concept of a general resource. Should

we think of mental resources as commodities that are infinitely transferable

from one task to another, like money, or as commodities that are very useful

for some tasks and acceptable but less useful for others, like alternative

sources of energy?

These issues are serious ones, and should not be minimized. Initially,

however, we shall ignore them. We shall later examine the plausibility of the

assumptions and consider how our data and models might be affected by their

violation.

-9--..: .;.,Wm I 5 L' - .. -' " ..........."...
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We shall be concerned with a third issue that has been raised as a

problem for resource competition theories. In many of the nomothetic ex-

periments that have been conducted, data has been aggregated over Individuals.

This often amounts to an assumption that there is negligible inter-individual

variation in resource capacity, a highly questionable assumption. Rather

than regarding inter-individual differences in capacity as a problem for

experimental interpretation, we shall attempt to incorporate them within a1
resource competition model.

The Easy to Hard Paradigm

Much of our work is based on an experimental design that we have come

to call the easy to hard paradigm. Imagine that two individuals are perform-

ing an easy version of Task 1, e.g., solving easy reasoning problems. It

could easily happen that two individuals who perform at the same level

(virtually perfectly) on this task might differ markedly in their ability

to perform a more difficult reasoning task. The easy task would not be

challenging enough to reveal the difference between the two performers. How-

ever, one might be able to discriminate between the two individuals by using

the secondary task technique explained in the previous section. The "spare

capacity" of each Individual would be measured during performance of the easy

version of Task 1. This spare capacity measure would predict performance on

a more difficult version of Task 1.

This logic can be illustrated graphically by considering the POCs for

two different individuals, A and B. The performance resource functions are

* I shown in Figure 5 separately for performance on easy and hard versions of

Task 1. In the easy condition (Figure 5a), both individuals are able to

reach a high level of performance, and thus the easy task fails to discrimi-

nate between them. Individual differences do appear in the hard condition
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(Figure 5b), where neither individual can reach maximum possible performance.

I--------------------------

Insert Figure 5 about here

--------------- --------------------------

Now suppose that we wished to predict performance in the hard condition

on the basis of performance in the easy condition. This would clearly be

impossible since both individuals are performing at the same level (p*),

although they may be expending different amounts of resources to achieve

this level of performance. However, we can use performance on a secondary

task to predict performance on the hard version of Task 1. Although we

cannot discriminate between persons A and B on the basis of unobservable

performance-resource functions, we can discriminate between them on the

basis of their POCs, which can be observed directly. Good performance on

the secondary task should be an indication of spare capacity that could be

usefully applied if the primary task became harder.

This is illustrated by the POCs shown in Figure 6. both A and B

perform the easy version of Task I at level p*. However, A can achieve

this performance with a smaller output of resources. Therefore, A will

achieve a higher level of performance on Task 2 than B.

Insert Figure 6 about here

We have offered this informal presentation of the easy to hard paradigm

to illustrate its intuitive appeal. A closer look at the reasoning behind

the paradigm reveals additional complexities. Individuals can differ in
several characteristics that are relevant to dual-task performance: a) struc-

tural parameters pertaininT to performance of Task 1, which determine the

resources necessary to perform that task at a given level; b) structural

37,
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parameters pertaining to performance on Task 2, which determine the resources

necessary to perform that task at a given level; and c) total resource cap-

acity. It is very difficult to analyze the contribution of each of these

factors to performance in the dual-task situation by appealing to the type

of intuitive argument so far presented. For this reason, a more formal,

mathematical analysis is presented in the following section.

:1

~1
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Definitions and Preliminary Notation

The model to be developed deals with the relations between primary

and secondary task performance over four different conditions. Conditions

will be indexed by the variable c, where

*" c-O; The secondary task is done alone

cal; The primary task is done alone, at an easy level of difficulty

c=l+; The primary task Is done at the easy level of difficulty, and

the secondary task is performed concurrently

c=2; The primary task is done alone, at a hard level of difficulty

As an example, suppose that the primary task was to memorize either

three or seven digits and that the secondary task was to respond to a

visual signal. Condition c=O would be a "probe alone" condition, in which

the visual signal was presented and reaction time recorded. Condition c=l

would require nemorizing three digits. Condition c=l+-would require memor-

izing three digits, and a visual probe slnal might be presented during

the rehearsal period. Condition c=2 would involve memorizing seven digits.

Clearly condition 2+ is a logical possibility, but it will not be dealt

with here.

An individual performer, I (I - l...N), will be characterized by a

*triplet, ( e 1, e21l R1), where e 11 represents the ith individual's struc-

tural efficiency at the primary task, and e21 represents the individual's

structural efficiency at the secondary task. Ri represents the person's
attentional resource limit, or capacity. Collectively, the individuals in

an experiment constitute a set S, where

(9) S { (ell, e21 , R1 ) I -

Fl
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Performance on any task t (t = 1,2) requires the allocation of atten-

tional resources to the task. Let rti(c) be the amount of resources de-

voted to task t by individual I in condition c. By the definition of re-

source capacity,

(10) 0 < rti(c) f Ri  , t = 1,2 i = I...N.

Let p t(c) be the observed performance of person I on task t in condition
ti

c. Then

(11) Pti(c) = Min ( ft(rti(c);eti, d) , Dt(eti, d) )

where ft (rti(c); eti, d) is the performance-resource function for an

individual with task structural parameter eti, who is faced with an ex-

ternal task of difficulty d (d=l, easy, d=2, hard), and Dt (eti, d) is

the data-l imit function. This function establishes maximum performance

for an individual, given the structural parameter and the external level

of difficulty of the task.

It follows from (11) that there will be a "maximum economic invest-

ment" that a person should make in task t at a given level of difficulty

and in a particular condition. Let this be rti (c), where rti (c) is the

minimum value of rti(c) that satisfies

(12) ft ( rti(c) ; eti, d) = Dt (eti, d).

A person will be said to be an economic performer in condition c If and

only if resources rli(c) are invested in the primary task.

The assumption that ft does not change over individuals and conditions,

except for changes in parameters, is actually an assumption of some content.

This sort of assumption is made in much psychological research. For in-

stance, it is made in stronger form in virtually all research on learning,

where individual parameters are fit to a generalized learning curve,

• . - ""_ "e~ . - '-- - - -.-. " .- - TT .- _. . . .. . . .. .. ... .... . . . . .
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and in psychometrics, where the factorial content of a task is assumed not

to change over individuals. It might be questioned in situations in which

individuals could differ in the strategy with which they approach the task.

A point that will be Imporatant In later analyses is that rti (c) is

established within a condition by the value of eti. This is apparent from

equation (11).

Task Assumptions

These assumptions deal with the resource requirements of the primary

task at the easy (d=l) and hard (d=2) levels of difficulty, and with the

requirements of the secondary task at its constant level of difficulty, d=k.

A.! All individuals reach a data limiting point in performance of the easy

primary task.

A.2 All individuals are resource-limited in performance of the hard

primary task.

Comment: One of the primary tasks that we have used in our experiments
I

provides an illustration of these assumptions. The task required active

rehearsal of either a small or large number of letter-digit pairs. When

there are only a few pairs to be reheArsed, subjects report that the task

can be done with less than maximum output of effort, and most perform

at a very high level. However, perfect performance is usually not attained

due to momentary lapses or failure to correctly code a stimulus when it

is presented. If there are many pairs to be rehearsed, it is difficult

to reach the last pair to be rehearsed before the first pair is forgotten,

and the effectiveness of rehearsal is closely tied to the effort put into

the task.

A.3 All individuals reach a data limiting point in performance of the

secondary task done alone.

W M -11

AL-----..---- - -
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A.4 All individuals are resource-liited in performance of the

secondary task done in conjunction with the primary task.

Coruen -A.3 states that if a person is able to devote all attentional

resources to e secondary task, a point will be reached at which struc-

tural limitations determine performance. In our work secondary task per-

formance generally required a simple motor response to a visual or auditory

probe. At a certain point the reaction time (RT) to such a signal will

be determined by equipment and structural, rather than resource, variables.

A.3 asserts that people reached this point.

A.4 can be evaluated by inspecting the data. As the secondary task

does not change its difficulty level, any difference in performance of

an individual in the 0 and 1+ conditions will have to be associated with

a change in resource allocation. If performance deteriorates from the

0 to 1+ condition then, perforce, performance in the 7+ condition must

have been resource limited. This situation always arises in the experi-

ments that we have completed on dual task performance.

A.5 Whenever any two tasks are done concurrentlysome amount of attentional

resources, A , will be diverted to the super ordinate task of co-

ordinating the two concurrent tasks.

Comment: Assumption A.5 has been introduced to cope with the common obser-

vation that in a wide range of dual task studies primary task performance

is worse in dual than single task conditions, in spite of instructions that

primary task performance should be maintained (Kerr, 1973). Assumption A.5

amounts to an assertion that individuals set aside an economically appro-

priate amount of resources, rti (c), for primary task performance, but that

this allocation is pre-empted by the automatically high priority assigned to
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inter-task co-ordination. Note that A is not subscripted, indicating that

individual differences in inter-task co-ordination will not be considered.

These assumptions lead to the following performance-resource funrtlons:

(13) Pli(1) = fl( r*i(l) , eli, 1) Primary task, alone,

easy condition

(14) pli(l+)= f, ( (rli (1)-A) , eli, 1) Primary task, dual,

easy condition

(15) Pli(2) = fl(Ri , eli, 2) Primary task, alone,

hard condition

(17) P21(O) = f2 (r()' e2i, 2) Secondary task alone

(18) P2i(l+)= f2( (Ri - rli(1) ), e21, k ) Secondary task, dual,

with easy primary task.

By virtue of the assumptions concerning data limitations (A.1 and A.3)

(19) pli(l) = Dl (eli, 1)

and

(20) P21(O) = D2(e21, k)

On occasion we shall refer to a variable itself, rather than to a

specific value of the variable. In such cases we write pt(c), suppressing

the subscript for the individual. To refer to a set of observations for

a particular task and condition we write

(21) Pt(c) = (Pti(C) } t 1,2
I ... N

c 0. , I,1+, 2.

r 1 71
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An analogous notation will be used to refer to structural and resource

variables, eI, e2, and R.

Assumptions about unobservables

The variables e, e2 , and R play a role analogous to the role of

latent traits in psychometric theories of intelligence. They are in prin-

ciple unobservable, but they are presumed to establish the observable

values. In this section some assumptions will be made about the rela-

tionship between the unobservable variables. In the following section

these will be combined with the assumptions about the unobservable-

observable relations expressed in equations (13) through (18), in order

to derive predictions about the relations between observables. This pro-

cedure resembles the data handling techniques used in the analysis of

causal models (Bentler, 1980). The mathematics are different because we

limit our assumptions about observable-unobservable relations to the con-

cept of a performance-resource function and because we allow for the

possibility of non-linear relations. Therefore we shall base our analysis

upon information-theoretic concepts rather than upon the partitioning of

covariances into components.

Summary comments on information theory

This subsection presents some information-theoretic concepts that will be

used in this paper. The presentation is intended to be a reminder of such

concepts rather than a tutorial discussion. (Luce (1960) provides an

excellent presentation in depth.) The notation stands apart from that in

the rest of the paper.

Imagine two abstract variables, x and y, with associated sets of

probabilities

- - - .......... ----
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(22) X= { (x=a) ac ranne of x

Y= {fp (y=b) b range ofy.

The information in each of these variables is defined as

(23) H(x) = - p . (x=a) log2  (j (x=a))
a

and similarly for H(y). The set of probabilities

(24) XxY p= {.(x=a & yb) }

states the probabilities of pairs of values for x and y, and

(25) H(x,y) = - p E R (x=a, y=b) log2  (x=a, y=b).
a b

Equation (24) can be used to define the sets of conditional probabili-

ties p( x=a : y=b) and p(y=b: x=a) , with the associated information

measures H(x: y=b) and H(y: x=a). The average information in y, given x,

is defined by

(26) H(y:x) = z p(x=a) H(y:x=a)
a

The information in a pair of observations can be expressed in terms

of the information in the individual observations and the conditional nrob-

abilities, as

(27) H(x,y) = H(x) + H(y:x)

j H(y) + H(x:y).

The maximum value of H(x,y) is

(28) Hmax (xy) = H(x) + H(y)

which is reached only when

m 4 - ... . . . . . ... .
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(29) H(y:x) H(y) and H(x:y) H(x)

This is sometimes stated in terms of the information transmitted from x

to y, which is defined by

(30) T(x;y) = Hmax(xy) - H(xy)

= H(x) - H(x:y)

= H(y) - H(y:x).

Two variables are said to be independent if T(x;y) is zero. Note

that this is a more general definition of independence than the statement

that there is a zero product-moment correlation between x and y, as T(x;y)

encompasses any functional relationship at all. Thus if T(x;y) is zero

there is no way of predicting the value of x from y.

Even when T(x;y) is greater than zero, prediction is not always sym-

metric, as the following example shows. Suppose that variable x may take
2

the values -1, 1, -2, 2 with equal probability, and that y = x It is

easy to show that in this case

(32) H(x) = 2

* H(y) = 1

H(x,y) = 2.

In terms of conditional information

(33) T(x;y) = 1

H(x:y) = 1

H(y:x) = 0

Thus y is perfectly predictable from x, but not vice versa. This situation

can be expected to arise in observable-unobservable relationships. The
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observable should be predictable given the values of an individual's para-

meters, but two or more combinations of parameters micht give rise to the

same observation.

Now consider the case of three variables, x, y, and z, with the

associated probability distributions. If H(x,y,z) is the information in

the set of triplets, { (x,y,z) I , then the information transmitted from

the (x,y) pair to the z pair, or vice versa, is

(34) T(x,y,z) = H(x,y) + H(z) - H(x,y,z).

The conditional information transmitted from x to z, or from z to x,

after allowing for the information transmitted by y is

(35) T(x,z: y) = H(x,y) + H(y,z) - H(y) - H(x,y,z).

The expressions for T(y,z:x) and T(x,y:z) are similar.

There is a particular meaninn of T(x,y) that should be kept in mind.

If the transmitted information between a pair oF variales is oreater than

zero, then it is possible to use knowledga of one variable to make a good

estimate of the other, provided that "good estimate" is defined in terms

of the probability distributions. To use an illustration that will be im-

portant later, suppose we define a best estimate as one that minimizes the

conventional least squares loss furction,

(36) L= (y)(y )2

y

where y is the estimate of y. If T(x,y) > 0, then there is some function

g(x) such that

(37) y * g(x)

..............................-.~.~4,.';'$.~-"~s...--.... ... ...
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will, on the average, produce a lower value of L than simply using the ex-

pectation of y,(E(y), as the estimate of y.

Individual parameters and their relations

We may think of all conceivable values of the parameter variables,

e, e2, and R, as having certain a priori probabilities of occurrence,

both individually (p (el = a ), etc.) and in pairs (p(eli=a. e =b)) and
li2

triplets. Our basic assumption is that, in the information-theoretic sense,

A.6 An individual's attentional resource capacity is independent of the

individual's structural parameters.

This can be stated formally as

(38) T( R;e I) = T (R;e2) = 0
2)=

This assumption effectively defines resources as those capacities of

the individual that are relevant to performance but independent of the abil-

ity to do any one task. Such a definition is at first reminiscent of j,

the general ability in classic Intelligence theory. At the empirical level

there is a slight difference in definitions, since resource capacity could

be identified by non-linear relationships between perfomance over different

tasks, while j, as strictly defined in factor analytic studies, is determin-

ed by linear relations. We suspect that most intelligence theorists would

regard this as a minor technological quibble, and we agree. A more basic

difference is the requirement that resource capacity be shared over all

concurrent tasks (equation (10) ). We know of no proposal that q is some-

thing that the Individual must parcel out over different ongoing activities.

There seems to us to be no way of distinguishing between the ideas of gen-

eral attentional resources and general intellectual competence so long as
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one deals only with statistical relationships between performance on diff-

erent tasks done one at a time. The distinction between the two concepts

depends upon performance when tasks can compete for attention.

Constraints on the relationships between observables

We are now in a position to state constraints on the relations between

observables. Such constraints, of course, provide the basis for empirical

testing of the model. The constraints will be stated by designating per-

formance on the primary task alone, at the hard level of difficulty

(variable pl(2) ) as a target variable, and expressing this variable in

terms of the other observable variables. Our approach will be to regard

performance-resource functions as mappings between sets of observable and

unobservable variables. H.e then examine the information-theoretic con-

sequences of these mappings. To aid in following the argument, Table 1

summarizes the mappings involved. The same information is shown graphi-

cally in Figure 7

Insert Table 1 About here

which depicts the uiiobservable variables el, e2 , and R, as being connected

to the observable variables by arrows, whose direction is intended to illus-

trate causation. Unobservable variables e1 and e2 are connected to each

other by a double-headed arrow, indicating that the model permits a statis-

tical association between these variables without any implication of causa-

tion. Variable R stands alone since, by assumption, it is independent of

the structural variables.

f

Insert Figure 7 about here

w-
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How should we go about predicting target variable performance from

knowledge of the other variables? We shall first present an infornal argu-

ment, which may be followed graphically by examining Figure 7. It is clear

from this figure that target variable performance, p1 (2), depends jointly

upon e1 and R. Thus any information that improves our ability to predict

e and R should improve our prediction of target variable performance. What

are the sources of information that we can use to estimate the two unobserv-

ables?

Our basic approach is to work backward from observables. Suppose,

for the moment, that we knew the performance-resource functions and that

we could state a priori probabilities for all values of the unobservables.

In general, a performance-resource function will establish a many:one

mapping from the set of possible values of unobservable parameter into

the set of possible values of an observable performance. Thus if we de-

termine the performance of a particular individual in a given situation,

we should improve our estimate of that individual's parameters, and this,

in turn, should make it possible for us to predict performance in a new

situation, providing that the new performance depends (partly) upon the

same unobservable parameters. However, there ay be redundancies between

the predictor variables. By this, we mean that there may be two or more

performance measures that yield the same, or nearly the same, information

about unobservables. With these considerations in mind, let us examine

ways to predict target variable performance.

Performance on the easy version of the primary task (variables p1(1)

and p1(1+))depends upon the primary task structural parameter, e1. This

is an example of the general rule that if performance is data-limited, then

there is a mapping from the structural parameter for that task into perform-

ance. Thus information about e1 can be obtained by examining p1(1) and P1l0+).
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Whether or not these two information sources are redundant depends upon the

value of A , the amount of resources devoted to co-ordination between tasks

in a dual task condition. If a is zero then pl(1) and pl(l+) are completely

redundant.

Information about el may also be obtained by examining secondary task

performance either alone or in the dual task condition ( p2(O) and P2(1+)).

Consider first the case of secondary task performance alone, variable p2(O).

Since this performance is data-limited, there will be a mapping onto per-

formance from the set of possible e2 values, making it possible to improve

our estimate of the secondary task structural parameter. If there is a

statistical (not causal) association between the two structural parameters

this relationship can be used to estimate the value of el. The logic is

similar to the logic of using a measure of arm strength to estimate leg

strength; there is no direct causal connection between the two measures,

but knowledge of one would probably improve prediction of the other.

The case of secondary task performance in the dual task condition,

variable p2 (I+), is more complicated. Variable el can be estimated in-

directly, through estimation of e2, as described above. Variable (+)

however, is a resource-limited variable. The amount of resources made

available to the secondary task in the dual task condition will be equal

to the difference between the individual's resource capacity and the re-

sources reouired to bring the prinary task to its data limit (RI and rti (1+)).

The latter variable is determined by ell, the individual's primary task

I structural parameter. Thus secondary task performance in the dual task con-

dition will be partly dependent upon the primary task structural parameter.

Finally, how are we to estimate resource capacity, R. This enters into

the determination of only two performance variables, the target variable itself
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and secondary task performance in the dual task condition. Thus secondary

task performance in the dual task condition is connected to target variable

performance by three chains of information, links through eI and e2, which

may be partly or wholly redundant to the links connecting target variable

performance to other predictors, and by a link through R, which is indepen-

dent of the chains of information involving other predictor variables.

Turning again to Figure 7, each of these links correspond to paths in

the graph. There are paths from p1(1), p1(1+), and P2(1+) to p1(2) going

through e1. There are paths that go from P2(O) an~d p2 (1+) to p1(2) by mov-

ing first to e2 and then to e1. Only p2(1+) has a path that moves to p1(2)

through R.

The information-theoretic basis for the assertions will now be qven.

The performance-resource function states that the value of p1(2) is

completely established (within the limits of measurement error) when the

pair of parameters (e1, R) is known. Furthermore, by the definition of a

performance-resource function, any change in R will cause a change in per-

formance, since hard primary performance is resource limited. The informa-

tion transmitted from R to p1(2), Independently of e1 , is

(39) T(R,pl(2):e1 ) = H (e1, R) + H(elPl(2)) - H(el) - H(el, R, pl(2) ).

Because p1(2) is completely determined by e1 and R,

(40) Hie 1 , R, p1(2) ) 1 H(e1, R).

Substituting (40) into (39),

(41) T(R, pl(2): e1) - H( elPl(2) ) - H(el)
- H( p1(2) : e,)

r p (e1 a) H (p1(2) : er-a ).
a
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By the definition of resource itmited, and the performance-resource function

it is true that for every pair of values Ri, R '. R1  RI

(42) fl( Ri ; eli, 2) 0 fl (Ri' 4 eli, 2)
!1

if e1 i = eli .

* Thus for fixed eI, there is a one: one mapping from R to pl(2). This means

that

(43) H(p (2) : el=a) = H(R : el=a).

By assumption on A.6, e1 and R are independent. Therefore

(44) H( R: e,= a) = H(R)

and therefore

(45) T(R, pi(2): el) = H(R).

Equation (45) states that unless R is known completely there will be

uncertainty in predicting the target variable, regardless of how accurately

we have established the value of the structural parameter e . Thus it al-

ways pays to improve prediction of R, since this always reduces the uncer-

tainty in estimating the target variable.

The situation is not quite the same with respect to e1. By reasoning

similar to the derivation of (41),

(46) T(e1, P1(2): R) -H(p1(2) : )
I P p (R-b) H (p1(2) : R-b)
b

However the performance-resource function does not define any condition for

fixed R and varying e1. In fact, quite reasonable functions can be drawn
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that show eli ell,, but for some R

(47) f1(Rzb; eli, 2) = fl(R=b; elip, 2).

An example is illustrated in Figure 8. The only restriction is that if the

Insert Figure 8 about here

ei.'s are not equal there be some value of the pair (R,el) for which (47) is

false. In the figure, three performance-resource functions are shown, for

el= a, b, c . Given that el is known, it is still necessary to establish

R before an estimate of p,(2) can be made. However, if R is known one would

not need to discriminate between el=a and e1=b in order to estimate target

performance.

This reasoning is illustrated formally by observing that

(48) H(pI(2):R) < H(e1)

and therefore

(49) 0 < T(e1, P1(2) R) < H(el).,!

This means that whether or not improving one's estimate of I improves pre-

diction of p1(2) depends on exactly how the estimation is made. If the

reduction in information obtained through the estimation procedure is great-

er than H(e1) - T(e1, p1(2) : R),then improvement is bound to occur. If

the reduction is not this great, then whether or not prediction is improved

depends on whether or not the prediction allows one to discriminate between

possible values of el for which (47) is not satisfied. This can be seen by

examining Figure 8. Suppose that It has been established that Ri - R*. Any
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information that alters the probability that eli c will transmit informa-

tion about the value of the target variable. Information that changes

p(eli=a) and p(eli=b) relative to each other, but leaves unchanged the pro-

bability that the value is either a or b, will not influence the accuracy

of a prediction.

The results established for p1(2) generalize to the prediction of per-

formance in any resource-limited situation. Since information transmission

is defined by a statistical relationship rather than by an interpretation

of causality, prediction is possible in both directions. This may also be

seen by examining Figure 8. If performance were to be observed at point

p*, then resource capacity would have to be either at point R* or R**. The

r eresults also apply to residual uncertainties. That is, suppose that by

utilizing one set of observations we obtained an imperfect estimate of the

et's and the R value. We could apply the reasoning given above to an analy-

sis of residual variation in the unobservables, after allowance had been

made for the reduction in uncertainty due to the initial observations.

A stepwise technique for predicting hard primary task performance

I will now be developed. It is clear from Figure 7 and from the mappings

* stated in Table 1 that statistical associations between the two primary

task measures (pl(l) and p1(2) ) will be due to their joint dependence on

el, the primary tas!' structure variable. The performance-resource function

establishes a many:one mapping from E (1) to P (1), hence

(50) T( e1, Pl(1) ) = H(pl(l))+ H(e1) - H(pl, el)

= H(p1(1)) + H(e1) - (H(e1) + H(pl(1):ej))

Since H(pj(1):e1 ) = 0, from the definition of a data limit, (50) reduces to

(51) T(e1 , p1(1)) * H(pl(1)).
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Thus if there is any variation in the observable, primary task performance

in the easy-alone condition, this variation can be used to gain some infor-

mation about the primary task structural parameter, el . Whether or not

this information will aid in determining primary task performance in the

hard-alone condition depends on the considerations given in discOssina equa-

tions (48) and (49). Information about e, may help in prediction, and our

intuitions are that it usually will, but within the restrictions estab-

lished by the model, we can construct a situation in which this is not

true.

A similar argument applies to the prediction of hard primary task

alone perforance from performance on the secondary task alone, variable p2(O).

The only additional comment is that the prediction involves two steps.

Given observed performance, the secondary task structural parameter, e2,
can be estimated. If T(e1, e2) is not zero (and the assumptions of the

model permit either condition), then prediction of el is possible, indirect-

ly, through e2. Again our intuitions are that such information will assist

in predicting the target variable, but the model does not demand that this

be so.

Much stronger restrictions apply when we consider the variable P2(1+),

secondary task performance in the dual task condition. From Table 1, we

see that P2(1+) is a function of e2, r*(1+), and R. The variable r* (1+),i2
,. however, is itself a function of el. Thus the performance-resource function

for the secondary task in the dual condition can be written

(52) p2(1+) - f (R; e)

where

(53) e (e1, e2).
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By the argument presented for p1(2), we can express the information shared

by the observable, P2 (1+), and the resource capacity variable, R, as

(54) T(P2(1+), R:e) = H(R),

and this is independent of information associated with e. This does not

mean that R is perfectly predictable from knowledge of secondary task per-

formance in the dual task condition, but it does mean that by observing

this performance one can improve one's guess concerning the value of R.

See the analogous illustration associated with Figure 8. As improving

one's prediction of R will always help in predicting the target variable,

the model demands that there be an association between p,(2) and P2(1+).

Furthermore, at least part of this association should be independent of

any association due to joint statistical relations between these variables

and any of the other nbservables.

The infornation-theoretic analysis can be summarized in a form that

approximates conventional statistical analysis. Two variables will be

said to be associated if there is a statistically reliable correlation be-

tween the first variable, y, and a prediction function, y = g(x) of the

second variable. The arguments presented above show that there "may exist"

two functions, g1(pl(1)) and g2(P2(O)) that associate the target variable,

primary task performance in the hard-alone condition, with primary task

performance in the easy-alone condition and secondary task performance in

the secondary task alone condition. There must exist a function g0(P2(1+))

that associates secondary task performance in the dual task condition with

the target variable. Furthermore, this association is at least partially

independent of the two previous associations if they do exist.

Suppose that we knew what the prediction functions g., ql, and q2 were.

------------------------------?. . . .
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We could then construct yo, yj* and Y2 and test the model's predictions,

by examining the first order and partial correlations between the y's and

the target variable. In the following subsection a method of estimating

the prediction functions is presented.

Approximation by linear polynomials

There is no way to identify the g's in the preceding analysis without

providing a task-specific model of response production. In order to test

the general resource competition model, though, we do not need to know

what the g functions are. All we need to know is what they can predict.

This can be done if we find an arbitrary (and not psychologically interpret-

able) approximation to each g function. Our approach makes use of the fact

that if x and y are arbitrary real variables, and y is a single valued func-

tion y=g(x) of x, then g may be approximated by the linear polynomial function

K
(55) g(x) = r avxv

v=O

for some unknown K. In practice, if we are given N data points, (xi, yi),

and if (xi=xJ) implies that (yi=yj), then the relation between x and y in

this data set can be stated exactly by (55), with K< N-l. (If the equality

condition is not met, we can reformulate the problem by replacing the

various y's at a given x value by their average. Fluctuation about this

point is thus assumed to be due to variation in y not associated with x.)

In practice, we would not want to calculate (55) for K as high as

N-l, as this would maximally capitalize on chance fluctuations in the data.

Instead we can set limits on the value of K. One limit is simply intuition:

we find it hard to imagine reasonable psychological functions that would

require approximations using terms higher than K-5. In practice we have

used 6 and 10 as limits on K. (See Tukey (1977) for a discussion of the
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introduction of such arbitrary assumptions.) A second limit is established

by the reliability of the data. If we know that the reliability of the

predictor is only r, there is little point in choosing K to be so large

that the correlation between y and g(x) exceeds r.

In practice, we have used the following technique. Given two observables,

x and y, with y to be predicted using a possibly non-linear function of x,

we calculate the multiple regression of y on the variables xv = xv, for

v = 1..K, where K is either an arbitrarily established limit, or the value

of v at which the multiple regression first exceeds the reliability imposed

by the data. Predictor variables are entered in order of ascending v's.

We then examine the resulting regression equation, and set to zero any

regression weight av which is not reliably different from zero. The .01

criterion of reliability has been adopted, but we do not follow it

"slavishly", i.e. if a significance level of .02 or .03 is noticed we

experiment with regression equations that do or do not use the variable.

We then calculate the multiple regression using only the reliable variables,

and determine whether or not there is any change in the multiple regression.

If there is no large change, the process terminates, and the resulting 9

is our approximation of g. If there is a changewe then experiment with

various combinations of predictor variables to determine whether or not

we have uncovered a suppressor variable. (We did uncover one case of

"classical suppression" in one of our analyses. The mathematical basis is

described by Cohen and Cohen (1975, pg. 87).) If suppressor variables are

discovered they are included in the equation.

* The linear polynomial approximation procedure may involve substantial

capitalization on chance fluctuations in the data. Therefore we recommend

it only for large studies. In practice we shall apply it to a study

involving 81 subjects. To deal with smaller studies we apply the much more

arbitrary criterion of dealing only with linear relations (i.e. K-I), and
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using conventional correlational analyses. The resource competition model

provides some justification for doing so whenever we are dealing with a

relation between observables that is dependent on resource capacity, the

R variable. By the definition of a performance-resource function, perfor-

Pance will always be an increasing function of R in resource-limited situa-

tions, hence there should always be a positive linear tern in the function

relating two observables to R. If the relationship between observables is
traced through one of the structure parameters, eI or e2, a linear analysis

introduces an additional assumption. This is that the task structural

parameter is unidimensional, and that there is the same ordinal relationship

between the structural variable and both the observable performance variables.

While this assumption does not seem to be unreasonable (and is not required

in the non-linear analysis) we do want to be aware that we are making it.

The use of a linear analysis is perhaps least justified when we

examine the independence of predictions of the target variable based on

different predictors. Suppose we find that there is some predictability

in the y variable associated with a linear function of x (as in conven-

tional correlational analysis) and that there is a further component of y

that can be predicted by a linear analysis using a second predictor, z.

It is possible that the additional component, which appears to be pre-

dictable only from z, might be predictable by a non-linear association

between x and y. While this may seem to be an unlikely possibility in

practice, we do want to be aware that there is nothing in either the

resource competition model or in the mathematics of approximation that

guards against such a spurious result.

Jn sumnary, the technique of approximation of predictor functions

by linear polynomial analysis provides a justifiable way of examining

the implications of the resource coipetition model. The approximation
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technique, however, requires precise data that can be obtained only in a

large experiment. Conventional linear analysis can be justified in some

cases, but may suppress relationships that could cause us to question the

model. In practice what we have done is to apply a linear analysis to

smaller experiments, and a non-linear analysis to very similar larger

studies. We then ask whether or not the approximation functions uncovered

by the non-linear analysis raise questions about the interpretation of the

linear analysis.

.1



Attention

38

Experimental Results

The resource competition model has been used to analyze several ex-

periments in a series of studies of dual task performance (Lansan and

Hunt, Note 1). All of the experiments used the "easy to hard" paradigm,

in which performance on a difficult primary task, done alone, was pre-

dicted from various combinations of primary and secondary task perform-

ance. A linear analysis of two smaller exoeriments, involving about 50

subjects each, will be reported first, and then a non-linear analysis of a

larger study, involving 81 subjects.

The first two experiments used a verbal short-term memory task as

the primary task. The sequence of events observed by the subject is

shown in Table 2. First several letter-digit pairs were presented, to

establish an initial set of paired associates to be retained in memory.

Each subsequent trial contained a test phase and a study phase. During

the test phase, a letter would be presented with a question mark, and

the subject would attempt to recall the digit most recently paired with

that letter. In the study phase, the same letter would be presented,

paired with a new digit. The difficulty of this task was manipulated

by varying the number of letter-digit pairs involved.

Table 2 about here

This task is generally referred to as a continuous paired assoc-

iates task. The present form was developed by Atkinson and Shiffrin (1968),

who used it to test their buffer model of short-term memory. A similar

task was used by Yntema and Meuser (1962) some years earlier. Perform-

ance on the task has been shown to be related to scores on tests of

4 m I•iimlIi ii n i
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scholastic aptitude (Hunt, Frost, & Lunneborg, 1973) and to the perform-

ance of computer programers (Love, 1977).

A probe reaction time task was used as a secondary task. In dual

task conditions, a probe was presented during the study phase of 75% of

the trials. In one experiment, the probe signal was a set of asterisks

shown imediately above the letter-digit pair. In the other, the probe

was a tone presented through headphones. Subjects responded to the

asterisks by pressing a key, and to the tone by speaking the syllable

"Bop" into a microphone. Paired associate and probe tasks never required

a response during the same interval.

If resource competition is involved, the secondary and primary

tasks should interfere with each other. Figure 9a shows performance on

the paired associates task as a function of the number of pairs to be

maintained in memory and the presence or absence of the probe task. Fig-

ure 9b shows probe reaction time (RT) as a function of the difficulty of

the concurrent memory task. The zero memory load condition represents

the probe task done alone. The pattern of interference between tasks

,* is typical of that found in many experiments. Mutual interference is

evident, and the greatest increment in probe reaction time is associated

with the change from the probe alone condition to the probe plus memory

task condition. Smaller increments in probe RT occur as the difficulty

of the memory task increased.

Insert Figure 9 about here

If our model of individual differences is correct, then we would

expect performance on easy and hard versions of the primary task to be] 'I correlated, since they are both influenced by el, the structural parameter
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for the primary task. Performance on the hard primary may also be

predicted by RT in the secondary task done alone, due to a correlation

between e1 and e2 . However, RT to the probe in the dual task condition

should improve prediction of accuracy on the hard primary task, since

RT in the dual task condition is influenced by resource capacity, R, as

well as e2.

Table 3 summarizes the linear correlations obtained in the two

experiments. Of greatest interest are the partial correlations between

accuracy on the hard primary task (the target variable in our theoretical

analysis) and probe RT in the dual task condition. The variable "held

constant" by the partial correlation technique is either accuracy in the

easy primary task done alone or probe RT in the secondary task done alone,

or both of these. The partial correlations are shown in the three right-

most columns of the table. In each case the correlation is reliably

different from zero. Thus probe RT in the dual task condition was

significantly correlated with the target variable, even after the two

single task variables were statistically removed.

Insert Table 3 about here

A third experiment involved 81 subjects, selected fronm a wide adult

age range in order to maximize individual differences. The first part

of this experiment was essentially a replication of the previous work.

The primary task was the continuous paired associates task, and the

secondary task involved manual response to an auditory probe. The

second part of the experiment involved a new primary task. Subjects

were shown a random pattern of plus (+) signs on a computer display

screen. This standard pattern was followed by a mask, and then by a

-II
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pattern of plus signs that was either identical to the standard or

differed from it by the movement of a single plus. The subject's task

was to indicate whether the second pattern was identical to or different

from the standard. In the easy version of this task, patterns were com-

posed of four plus signs in a 3 x 3 matrix. In the hard version, there

were ten plus signs in a 7 x 7 matrix. As in the case of the paired

associates task, probes were presented during the study phase of 75% of

the trials. The exact sequence of events is shown in Figure 10.

Insert Fioure 10 about here

Table 4 shows data from the paired associates task. Presented are

correlations of the target variable, performance on the hard paired

associates task, with linear and non-linear functions of several predictor

variables. Of particular interest is the correlation between the target

variable and performance on the secondary task in the dual condition,

after the effects of the other two predictors have been held constant

by partial correlation. This correlation is reliably greater than zero

in both the linear and non-linear analyses.

Insert Table 4 about here

A glance at the table shows that there are only slight differences

between the linear and non-linear analyses. These differences would not

change our conclusions in any way. This result strengthens our confidence

in the linear analyses of the smaller experiments. Visual inspection of

the form of the non-linear analyses indicates that they all have strong

linear components, and that the non-linearities are usually introduced
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to modulate extreme effects, for example, to correct for excessively

pessimistic prediction associated with extremely long RTs.

A rather different picture emerged from examination of the data

from the spatial memory task. Two observations led us to suspect

that even the difficult version of this task was not resource-limited.

First, although the primary task did interfere with the secondary, the

effect was much smaller than in the experiments using the paired assoc-

iate primary task. Figure 11 compares the effects of the spatial memory

and paired associate tasks on probe RT. The second observation was

that subjects reported quite different strategies in attacking the two

tasks. The paired associates task was almost always attacked by con-

centrated rehearsal of the current pairs. No such rehearsal strategy

is available for the spatial memory task. Instead, subjects reported

that a passive approach of simply looking at the standard patterns was

most effective. If active rehearsal strategies are ineffective in the

spatial memory task, then we would expect data rather than resource lim-

itations to be important in determininq performance on that task.

Table 5 presents the linear and non-linear correlations for the

spatial memory task. Consider first the linear analyses. No reliable

partial correlation remains between RT in the dual task condition and

accuracy in the hard spatial memory task, after allowing for individual

variability in single task conditions. The same thing is true in the

non-linear analysis. Although the non-linear analysis is not identical

to the linear analyses (because of the change in correlation between the

target variable and performance in the probe alone condition) the partial

correlations measuring the predictability of the target from secondary

task performance in the dual condition remain low. In terms of the

model, there does not seem to be a path leading to the target variable

-_-- . . -.. . . . .. . . . _ . . . .. .. .. . .. . .
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via the resource latent variable (R). This situation would arise if

performance were data limited throughout levels of difficulty of the

spatial memory task,

'I6

*
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CONCLUDING REMARKS

An evaluation of the approach

The idea that allocatable attentional resources must be considered

in the analysis of cognition is an important one. Nevertheless, prob-

lems have arisen in the development of resource competition models that

have posed serious difficulties for experimental psychologists. One of

these problems is that individual differences in both resource capacity

and specific task efficiency almost certainly exist. This prevents a

straightforward interpretation of many experimental designs. A second

problem in the analysis of resource competition studies is that indivi-

duals may not follow the particular resource allocation policy that

the experimenter would like them to use. The third problem is that the

notion of a mental resource is itself a vague one. Should we think of

a single pool of infinitely transferable resources, or should we think

of multiple resources with varying degrees of transferability? An

even more basic question is, "What, precisely, are these resources sup-

posed to be?" Should they be given a physiological interpretation or

should we be content to deal with abstract concepts?

Our results are addressed directly to the first question. We be-

lieve that there are indeed individual differences in both resource

capacity and specific task structure parameters, but we do not regard

1.1 this fact as a reason for avoiding these concepts. Rather, they provide

a topic for study. The problem of how individual differences enter into

performance on multiple tasks is an involved one, and Intuitions are not

always adequate in drawing out the implications of forml models. Thus,

we believe that study of the formal models is indeed necessary. In

developing models one need not restrict oneself to the usual assumption

I
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of linear measurement that underlies conventional correlational analysis.

The approximation technique used here is a strictly empirical one, that

allows us to trace through the steps in an information transmission model.

Such an approach is satisfactory only as an interim step. The resulting

linear polynomial expressions show what non-linearities exist, but do

not provide an interpretable algebraic expression. It would be far pre-

ferable to unite models of individual differences with more precise models

of how responses are produced in various tasks, so that we could examine

the adequacy of specific, theoretically justifiable functions as explan-

ations of the data.

Our own experimental work, and research in this area in general, is

vulnerable to the second objection. Experimenters rarely know what re-

source allocation policies are being used by their subjects. Subjects

are instructed to behave in an economically efficient manner, but do

they listen? Indeed, even if they try to follow instructions, do they

have that much control over resource allocation? In more analytic terms,

we have assumed that our subjects located themselves at a particular

point on the performance operating characteristic. There are techniques

for checking this assumption, but they are time consuming, and are con-

sidered feasible in experiments that involve only a few participants.

As individual differences designs usually require the study of large

numbers of subjects, experiments that are "completely adequate" from

both an individual differences and an attentional theory point of viewI
are likely to be expensive. Unless designs are found to solve this prob-

lem, it may well be the limiting feature of the line of research.

This paper has not addressed the question of whether resources are

unitary or multiple. Experimental designs that consider only a single

pair of tasks cannot answer questions about the specificity of resources.1.1
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Obviously, we can only talk about competition for resources between the

tasks that we observe. However, there is no reason why the methods used

here could not be extended to the study of interference patterns observed

between multiple pairs of tasks. It should be possible to develop models

of resource competition for situations in which the same individuals attack

different combinations of primary and secondary tasks. We could then ask

whether one could describe the data by assuming a single resource capacity,

or whether it was necessary to describe individuals in terms of several

different resources. Such an analysis could be combined with nomothetic

approaches, which stress the types of tasks that interfere with each other.

The two approaches should lead to a common definition of resources.

The meaning of attentional resources

In this paper, the term "attentional resources" has been treated as

an abstract concept to be defined by parameters in sets of equations. The

physiological approach to attention assumes that the concept has some

sort of corporeal reality. Two broad classes of explanation of "attention"

have been offered. One is that attention means the application of some sort

of processing unit within the brain, a unit that is required in the execution

of a large number of tasks. An alternative is to regard attention as an

energy concept, where the analogy is to the distribution of electric current

or water pressure, rather than to time sharing of a piece of equipment. One

could develop formal models that proceeded from either assumption. We expect,

j though, that it would be extremely difficult to distinguish between such

models on the basis of conventional psychological experiments alone.

If formal models are to be used to address the question "What is

attention?" it may be that they will be most helpful if the parameters
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used to describe an individual's resource capacity are reoarded as depen-

dent variables to be predicted by non-psychological factors, such as age,

state of alertness, drug state, or other measures of physical condition.

Thus we would eventually define resource capacity in two ways: as a

determiner of performance in psychological experiments, as we have done

here, and as a measure that is responsive to certain types of variation

in an individual's mental state. Does capacity change systematically

with age? Is it responsive to training? Can capacity be altered by

either natural or unnatural changes in physiological condition? Even

if the approach developed here is successful in defining a mathenatical

model of attention, it will still be necessary to conduct experiments

to define the concept of resource capacity in terms of the controlling

independent variables. Such research must focus on dual tasks, rather

than on the execution of one task at a time, because performance

on a single task, done alone, does not allow one to distinguish between

the efficiency with which a person executes a task d t- amount of re-

sources that the person devotes to it.

1
1i
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Footnote

1. This research was supported by the Office of Naval Research, Contract

#NO0014-77-0225, Earl Hunt, principal investigator. We would like to

thank Colene McKee for assistance in the analyses reported here, and

Christopher Hertzog for his assistance in discussing some of the statis-

tical issues involved.
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Table 1

Summary of the mappings between observable and unobservable variables

in the easy-to-hard paradigm.

PRIMARY TASK

Equation Mapping

Pli( 1 ) = fl(rl*(1), eli, 1) fI: E1  P1 l
( )

pli(l+) - fl((rli*(1) - ); eli, 1) fl: E1 -. pl(1+)

Pli(2) = fl(Ri, e1i, 2) fl: EI x R -pl(2)

SECONDARY TASK

Equation Mapping

P 2 (O) = 2(r2i*, e2i, k) f2 : E2 +P2 10)

p21(l+) = f2((RI - r11*(1) - A), e21, k) f2: E2 x E1 x R 'P2(l+)

II

V
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Table 2

Sequence of Events for the Paired Associate Task

Event Display Duration

Sequential presentation A = 7 3 sec

of initial pairs. B = 3 3 sec

Question. The correct

answer is 3. B = ? Subject paced.

Rehearsal interval. Letter

just queried is paired with B = 4 3 sec

a new number.

Probe. A probe may occur Probe is presented until

500, 1000, or 1500 msec after B 4 subject responds for a

presentation of a new pair. maximum of 1500 msec.

Question. The correct Question remains on

answer is 7. A ? screen until subject

responds.

Rehearsal interval. Letter

just queried is paired with A * 5 3 sec
a new number.

-1]
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Table 3

Correlations between the Target Variable and Three Predictor Variables

in the Paired Associate Task, Experiments 1 and 2 a

First Order Correlations Partial Correlations

Predictor Variable Predictor Variable: Covariate

()P 2(1+) P2(1+) P2(1+)
P1 P p2  : P1(1) : P2(0) : P1(1)' P2(O)

xperiment 1
aired Associates

with Visual Probe, .52 -.05 -.40 -.32 -.44 -.36
Manual Response

Experiment 2

Paired Associates
with Auditory Probe, .28 -.37 -.39 -.37 -.28 -.28
Vocal Response

pl(1) = Accuracy in the easy paired associate task done alone

P2(O) = RT in the probe task done alone

P2(1+) = RT in the probe task during the easy paired associate 
task

acorrelations greater than .27 are significant at the .05 level.

m b

- - ,, i
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Table 4

Correlations between the Target Variable, and Linear and

Non-Linear Functions of Three Predictor Variables

in the Paired Associate Task, Experiment 
3 a

First Order Correlations Partial Correlations

Predictor Variable Predictor Variable: Covariate

P2(1+) P2(1+) P2(1+)

Pl(1) P2 (
0 ) P2(1+) : p1(i) : p2(0) : P1(1),P 2 (O)

Correlations with
the Variable Itself .57 -.21 -.49 -.30 -.47 -.36

Correlations with a
Non-Linear Function .60 -.21 -.49 -.32 -.47 -.31
of the Variable

P1(0) = Accuracy in the easy paired associate task done alone

P2(0) = RT in the probe task done alone

p2(1+) = RT in the probe task during the easy paired associate task

aCorrelations greater than .22 are significant at the .05 level

I,

'I
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Table 5

Correlations between the Target Variable, and Linear and

Non-Linear Functions of Three Predictor Variablesa

in the Spatial Memory Task

First Order Correlations Partial Correlations

Predictor Variable Predictor Variable: Covariate

P2(1+) P2 (1+) P2(1+)
Pl(1) P2(O) P2(1 +)  :Pi(1) :P2(O) :PI(1), P2(O)

Correlations with
the Variable Itself .27 -.27 -.29 -.23 -.14 -.11

Correlations with a
Non-Linear Function .27 .44 -.29 -.22 -.14 -.11
of the Variable

P1(1) = Accuracy in the easy paired associate task done alone

P 2 (O) - RT in the probe task done alone

P2(1+) - RT in the probe task during the easy paired associate task

ga

: aCorrelations greater than .22 are significant at the .05 level
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Figure 7

Primary Task Measures Secondary Task Measures

Unobservables

PI(

Pl ( I+ )  e•2

iP2(1+)

! , P (2)

A diagram showing the causal connections between the three unobservable

parameters, e1, e2, and R, and five single and dual-task measures.
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Event Display Duration
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same or different from * * * subject responds.

the standard.

Sequence of events In the spatial memory primary task.
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P. 0. Box 8512? 1 Office of Naval Research
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1 Naval Iedical R&D Cotmmand Arlington, VA 22217
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National Naval Iedical Center 5 Personnel & Training Research Programs
Bethesda, t'D 20014 (Code 458)

Office of Naval Research
1 CAPT Paul Nelson, USH Arlington, VA 22217

Chief, Medical Service Corps
Bureau of Medicine & Surgery (HED-23) 1 Psychologist
U. S. Department of the Navy ONR Branch Office
Washington, DC 20372 1030 East Green Street

Pasadena, CA 91101
I Ted M. I. Yellen

Technical Information Office, Code 201 1 Office of the Chief of Ndval Operations
NAVY PERSONNEL R&D CENTER Research Development & Studies Branch
SAN DIEGO, CA 92152 (OP-115)

Washington, DC 20350
1 Library, Code P201L

Navy Personnel R&D Center 1 LT Frank C. Petho, MSC, USN (Ph.D)

San Diego, CA 92152 Code L51
Naval Aerospace Medical Research Laborat
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Navy Personnel R&D, Center
San Diego, CA 92152 1 Roger W. Reminaton, Ph.D
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Mr. Arnold Rubnsv.*in I 11 USAREUE & 7th Army
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Naval Materi,,l Command (nST241) USAAREUE Director of GED
Room 1044. Crystal Plaza 15 APO New York 09403
2221 Jefferson Davis Highway
Arlington, VA 20.,60 1 DR. RALPH DUSEK

U.S. ARMY RESEARCH INSTITUTE
I Dr. Worth Scanland 5001 EISENHOWER AVENUE

Chief of Navail Education and Training ALEXANDRIA, VA 22333
Code N-5
NAS, Pensjcola, FL 32508 1 Dr. Myron Fischl

U.S. Army Research Institute for the
Dr. Robert G. Smith Social and Behavioral Sciences
Officu of Chief of Naval Operations 5001 Eisenhower Avenue
OP-987H Alexandria, VA 22333
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1 DR. FRANK J. HARRIS
1 Dr. Alfred F. Siode U.S. ARMY RESEARCH INSTITUTE

Training Analysis & Evaluation Group 5001 EISENHOWER AVENUE
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Army Research Institute for the
Dr. Richard Sorensen Behavioral & Social Sciences
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Natal Ocean Systems Center U.S. ARMY RESEARCH INSTITUTE
Code 7132 5001 EISENHOWER AVENUE
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Army Research Institute
5001 Eisenhower Avenue
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Army Air Force

Commalant 1 Dr. Earl A. Alluisi
US Army Institute of Administration HQ, AFHRL (AFSC)
Attn: Dr. Sherrill Brooks AFb, TX 78235
FT Benjamin Harrison, IN 46256

1 Dr. Genevieve Haddad
Dr. Frederick Steinheiser Program Manager
U. S. Army Reserch Institute Life Sciences Directorate
5001 Eisenhower Avenue AFOSR
Alexandria, VA 22333 Boiling AFB, DC 20332

Dr. Joseph Ward 1 Dr. Ross L. V4organ (AFHRL/LR)
U.S. Army Research Institute Wright -Patterson AFB
5001 Eisenhower Avenue Ohio 45433
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1 Dr. Marty Rockway (AFliRL/TT)
Lowry AFB
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1 Jack A. Thorpe. Maj., USAF
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1 Director, Office of Itanpower Utilization 12 Defense Tecimical Information Center
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BCB, Bldg. 2009 Alexandria, VA 22314

Quantico, VA 22134 Attn: TC

1 DR. A.L. SLAFKOSKY 1 Dr. Craig I. Fields

SCIENTIFIC ADVISOR (CODE RD-1) Advanced Research Projects Agency
HQ. U.S. MARINE CORPS 1400 Wilson Blvd.
WASHINGTON, DC 20380 Arlington, VA 22209

I Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY

1400 WILSON BLVD.
ARLINGTON, VA 22209
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Office of the Under Secretary of Defense
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Dr. Susan Chipman I Dr. John R. Anderson
Learning and Development Departmaent of Psychology
National Institute of Education Carnegie Mellon University
1200 19th Street Wi Pittsburgh, PA 15213
Washington, DC 20208

1 DR. MICHAEL ATWJOOD

Dr. Joseph I. Lipson SCIENCE APPLICATIONS INSTITUTE
SEDR W-638 40 DENVER TECH. CENTER WEST
National Science FoundatLon 7935 E. PRENTICE AVENUE
Washington, DC 20550 ENGLEWOOD, CO 80110

Dr. John Mays 1 1 psychological research unit
National Institute of Education Dept. of Defense (Army Office)
1200 19th Street NW Campbell Park Offices
Washington, DC 20208 Canberra ACT 2600, Australia

Dr. Arthur Melmed 1 Dr. Alan Baddeley
National intitute of Education Medical Research Council
1200 19th Street NW Applied Psychology Unit
Washington, DC 20208 15 Chaucer Road

Cambridge CB2 2EF
Dr. H. Wallace Sinaiko ENGLAND
Program Director
Manpower Research and Advisory Services 1 Dr. Jackson Beatty
Smithsonian Institution Department of Psychology
801 North Pitt Street University of California
Alexandria, VA 22314 Los Angeles, CA 90024

Dr. Joseph L. Young, Director 1 Dr. Isaac Bejar
Memory & Cognitive Processes Educational Testing Service
National Science Foundation Princeton, NJ 08450
Washington, DC 20550

1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. Lyle Bourne
Department of Paychology
University of Colorado
Boulder, CO 80309

1 Dr. John S. Broti
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304
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Dr. Pat Carpenter 1 Dr. Emmanuel Dunchin
Department of Psychology Departnent of Psychology
Carnegie-Mellon University University of Illinois
Pittsburgh, PA 15213 Champaign, IL 61820

Dr. John 1. Carroll 1 Dr. Hubert Dreyfus
Psychometric Lab Departmoent of Philosophy
Univ. of No. Carolina University of California
Davie Hall 013A Berkely, CA 94720
Chapel liUll, NC 27514

1 LCOL J. C. Eggenberger
Charles Myers Library DIRECTORATE OF PERSONNEL APPLIED RESEAR
Livingstone [louse NATIONAL DEFENCE HQ
Livingstone Road 101 COLONEL BY DRIVE
Stratford OTTAWA, CANADA K1A OK2
London E15 2LJ
ENGLAND I Dr. Ed Feigunbaum

Department of Computer Science
Dr. William Chase Stanford University
Department of Psyc1hOlogy Stanford, CA 94305
Carnegie Mellon University
Pittsburgh, PA 15213 1 Dr. Victor Fields

Dept. of Psychology
Dr. Micheline Chi Montgomery College
Learning R & D Center Rockville, MD 20850
University of Pittsburgh
3939 O'Hara Street 1 Dr. Edwin A. Fleishman
Pittsburgh, PA 15213 Advanced Research Resources Organ.

Suite 900
Dr. Allan M. Collins 4330 East West Highway
Bolt Beranek & Newnan, Inc. Washington, DC 20014
50 Moulton Street
Cambridge, Ma 02138 1 Dr. John R. Frederiksen

Bolt Beranek & Newnan
1 Dr. Lynn A. Cooper 50 Moulton Street

Department of psychology Cambridge, MA 02138
*a Uris Hall

Cornell University 1 Dr. Alinda Friedman
Ithaca, NY 14850 Department of Psychology

University of Alberta
Dr. Meredith P. Crawford Edmonton, Alberta
American Psychological Assooiation CANADA T6G 2E9
1200 17th Street, N.W.
Washington, DC 20036 1 Dr. R. Edward Geiselman

Department of Psychology
Dr. Kenneth B. Cross University of California
Anacapa Sclences, Inc. Los Angeles, CA 90024
P.O. Drawer Q
Santa Barbara, CA 93102
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DR. RO3ERT GLASER I Dr. Walter Kintsch
LRDC Department of Psychology
UNIVERSITY OF PITTSBURGH University of Colorado
3939 0'HARA STREET Boulder, CO 80302
PITTSBURGH, PA 15213

I Dr. David Kieras

DR. JAMES G. GREENO Departinent of Psychology
LRDC University of Arizona
UNIVERSITY OF PITTSBURGH Tuscon, AZ 85721
3939 O'HARA STREET
PITTSDURGiU, PA 15213 1 Dr. Kenneth A. Klivington

Program Officer
Dr. Harold Hawkins Alfred P. Sloan Found-tion
Department of Psychology 630 Fifth Avenue
University of Oregon New York, NY 10111
Eugene OR 971503 1 Dr. Mazie Knerr
Dr. Barbara Hayes-Roth Litton-Mellonics
The Rand Corporation Box 1286
1700 Main Street Springfield, VA 22151
Santa Monica, CA 90406

1 Dr. Stephen Kosslyn
Dr. Frederick Hayes-Roth Harvard University

The Rand Corporation Department of Psychology
1700 Main Street 33 Kirkland Street
Santa Monica, CA 90406 Cambridge, MA 02138 t

Mr. Richards J. Heuer, Jr. 1 Mr. Marlin Kroger
27585 Via Sereno 1117 Via Goleta
Carmel, CA 92023 Palos Verdes Estates, CA 90274

1 Dr. Jamies R. Hoffman 1 Dr. Jill Larkin
Department of Psychology Department of Psychology
University of Delaware Carnegie Mellon University
Newark, DE 19711 Pittsburgh, PA 15213

I Dr. Lloyd Humphreys 1 Dr. Alan Lesgold
Department of Psychology Learning R&D Center
University of Illinois University of Pittsburgh
Champaign, IL 61820 Pittsburgh, PA 15260

1 Dr. Steven W. Keele 1 Dr. Mark Miller
Dept. of Psychology Computer Science Laboratory
University of Oregon Texas Instruments, Inc.
Eugene, OR 97403 Mail Station 371, P.O. Box 225936

Dallas, TX 75265
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Dr. Alien flunro 1 Dr. Ernst Z. Rothkopf
Behavioral Technology Laboratories [lell Laboratories
1815 Elena Ave., Fourth Floor 400 Mountain Avenue
Redondo Beach, CA 90277 turray 1111, NJ 07974

Dr. Donald A Norman 1 Dr. David Rumelhart
Dept. of Psychology C-009 Center for Human Information Processing
Univ. of California, San Diego Univ. of California, San Diego
La Jolla, CA 92093 La Jolla, CA 92093

Dr. Melvin R. Novick 1 PROF. FUNIKO SAMEJIMA
356 Lindquist Center for easurment DEPT. OF PSYCHOLOGY
University of Iowa UNIVERSITY OF TENNESSEE
Iowa City, IA 52242 KNOXVILLE, TN 37916

Dr. Jesse Orlansky 1 DR. WALTER SCHNEIDER
Institute for Defense Analyses DEPT. OF PSYCHOLOGY
400 Army Navy Drive UNIVERSITY OF ILLINOIS
Arlington, VA 22202 CHAMPAIGN, IL 61820

1R. LUIGI PETRULLO I DR. ROBERT J. SEIDEL
2431 N. EDGEIJOOD STREET INSTRUCTIONAL TECHNOLOGY GROUP
ARLINGTON, VA 22207 HUMRRO

300 N. WASHINGTON ST.
Dr. Martha Polson ALEXANDRIA, VA 22314
Department of Psychology
University of Colorado 1 Dr. Richard Snow
Boulder, CO 80302 School of Education

Stanford University
1 DR. PETER POLSON Stanford, CA 94305

DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO 1 Dr. Robert Sternberg
BOULDER, CO 80309 Dept. of Psychology

Yale University
DR. DIANE M. RAMSEY-(LEE Box 11A, Yale Station
R-K RESEARCH & 3YSTEH DESIGN New Haven, CT 06520
3947 RIDGEMONT DRIVE
MALIBU, CA 90265 1 DR. ALBERT STEVENS

BOLT BERANEK & NEWMAN, INC.
1 Dr. Fred leif 50 MOULTON STREET

SE3AME CAMBRIDGE, MA 02138
c/o Physics Department
University of California 1 Dr. David Stone
Berkely, CA 94720 ED 236

SUNY, Albany
Dr. Andrew M. Ruse Albany, NY 12222
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007
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DR. PATRICK SUPPES 1 Dr. Keith T. Wescourt
INSTITUTE FOR MATHEMATICAL STUDIES IN Informa.tion Sciences Dept.

THE SOCIAL SCIENCES The nd Corporation
STANFORD UNIVERSITY 1700 Main St.
STANFORD, CA 94305 Santa Monica, CA 90406

Dr. Kikurmi Tatsuoka 1 Dr. J. Arthur Woodward
Computer Based Education Research Department of Psychology

Laoratory University of California
252 Engineering Research Laboratory Los Angel1s. CA 90024
University of Illinois
Urbana, IL 61801

DR. PEHRY THORNDYKE
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

Dr. Duuglas Towne
Univ. of 3o. California
Behavioral Technology Labs
1845 3. Elena Ave.
Redondo Peach, CA 90277

1 Dr. J. Uhlaner
Perceptronics. Inc.
6?71 Variel Avenue
Woodland Ilills," CA 91364

I Dr. Benton J. Underwood
* Dept. of Psychology

Northwestern University
Evanston, IL 60201

Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Carnbridge, IA 02138

Dr. David J. Weiss
N660 Elliott Hall
University of innesota
75 E. River Road
Ilinneapolis, MN 551155
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